FIRST@CIRSE 2019

Zilver[®] PTX[®] Drug-Eluting Peripheral Stent

Michael D. Dake, MD University of Arizona Health Sciences Tucson, AZ

Overview

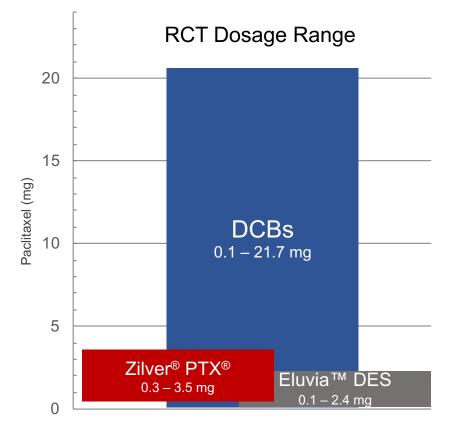
Actual Treatment

Analysis of mortality must consider known treatment with paclitaxel devices

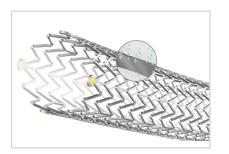

Current Status

Cook will continue working collaboratively with regulatory authorities, clinicians, and our industry partners to provide the data needed to make informed decisions for patient treatment

Patient Impact

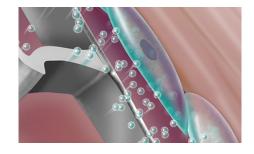

There is no mortality signal with Zilver PTX and the current situation is limiting patient access to the proven benefits of paclitaxel devices

Zilver PTX Stent Overview



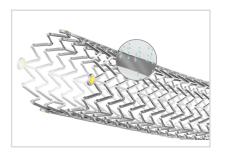
Coating

Low dose, amorphous coating with no polymer or excipient

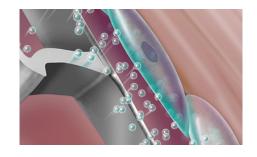


Zilver PTX Stent Overview

Coating


Low dose, amorphous coating with no polymer or excipient

Local Drug Delivery


Short-term drug delivery, no long-term paclitaxel exposure, only BMS remains

Zilver PTX Stent Overview

Coating

Low dose, amorphous coating with no polymer or excipient

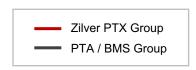
Local Drug Delivery

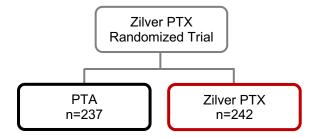
Short-term drug delivery, no long-term paclitaxel exposure, only BMS remains

Long-term data

Only peripheral DES with long-term safety data

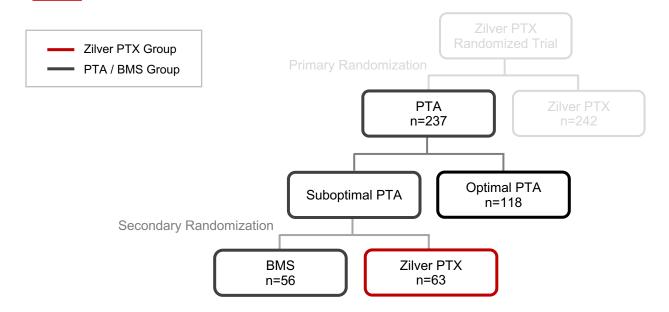
Zilver PTX Clinical Program

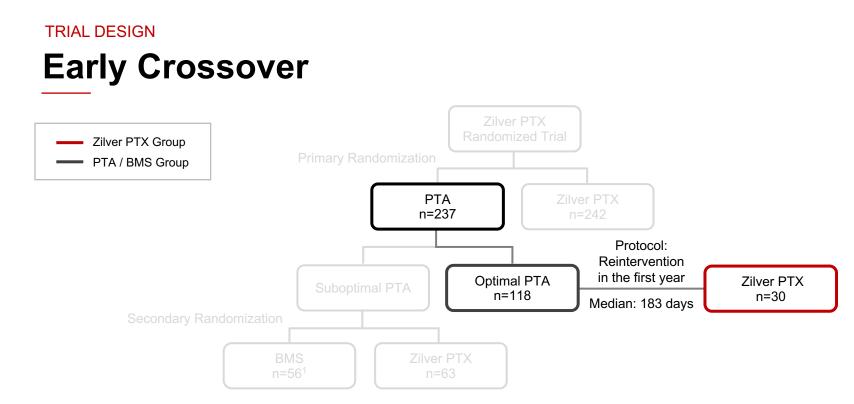

Study	Device	Follow-up	# of Patients
RCT	Zilver PTX	5 years	336
κu i	PTA/BMS		143
Japan PMS	Zilver PTX	5 years	904
	BMS	3 years	190
EU BMS	BMS	5 years	110
US PAS	Zilver PTX	5 years ¹	200
Single-arm Study	Zilver PTX	2 years	787
French Reimbursement	Zilver PTX	2 years	119
China	Zilver PTX	1 year	178
REAL PTX	Zilver PTX	3 years	75
	DCB ²		75


¹ Ongoing ² 77.3% INPact, 21.3% Lutonix, 1.4% Other.

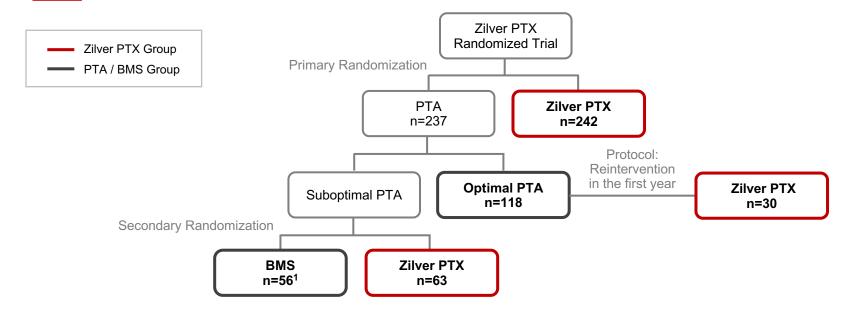
- Large studies
- Long-term follow-up
- Concurrent comparator groups

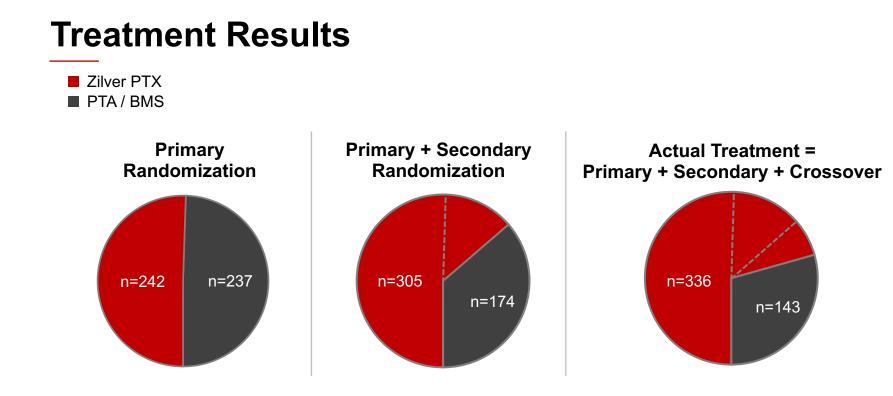
TRIAL DESIGN


Primary Randomization



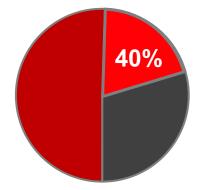
TRIAL DESIGN


Secondary Randomization

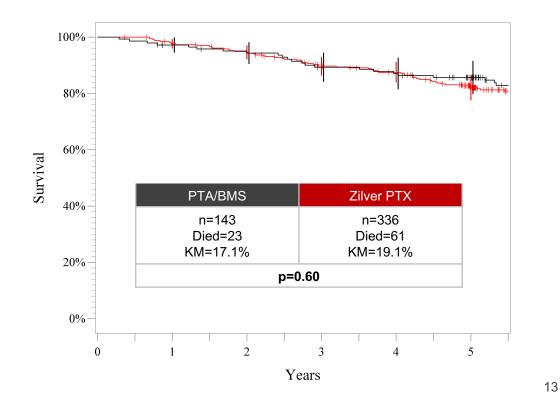


TRIAL DESIGN

Actual Treatment

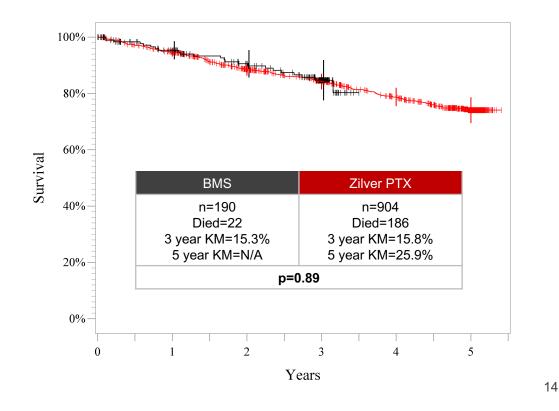


Treatment Results


Zilver PTXPTA / BMS

Primary Randomization rimary + Secondary Randomization

40% of patients initially randomized to PTA were actually treated with Zilver PTX Actual Treatment = Primary + Secondary + Crossover



RCT Actual Treatment

- 5-year vital status for 94% of patients
- All patients analyzed by actual treatment
- No mortality signal

Japan Post-Market Studies

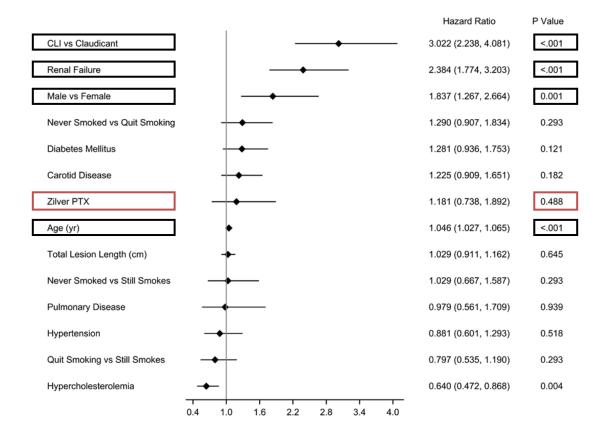
- Large, real-world; no exclusion criteria
- No increase in rate of mortality after 3 years
- No mortality signal

Covariate Analysis

- No mortality signal for Zilver PTX when evaluating actual treatment
- What factors were associated with mortality?

ZILVER PTX RCT

Covariate Analysis


Tissue Loss	↓
Congestive Heart Failure	
Still Smokes vs Never Smoked	
Renal Disease	•
Arrhythmia	
Pulmonary Disease	
Carotid Disease	
Diabetes Mellitus	↓→
Quit Smoking vs Never Smoked	
CLI vs Claudicant	
US vs Japan	—
US vs Germany	
Hypercholesterolemia	_
Zilver PTX	_
Male vs Female	+
Hypertension	•
Age (yr)	•
Total Lesion Length (cm)	◆
Body Mass Index	•
Previous Myocardial Infarction	+
Previous myocardial interction	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Hazard Ratio	P Value
2.256 (1.120, 4.542)	0.023
1.995 (1.108, 3.591)	0.021
1.774 (0.769, 4.092)	0.403
1.735 (0.958, 3.140)	0.069
1.665 (0.908, 3.056)	0.100
1.500 (0.884, 2.544)	0.133
1.491 (0.891, 2.493)	0.128
1.454 (0.908, 2.329)	0.119
1.444 (0.689, 3.027)	0.403
1.422 (0.684, 2.955)	0.345
1.413 (0.583, 3.422)	0.689
1.335 (0.446, 3.996)	0.689
1.257 (0.705, 2.244)	0.438
1.213 (0.728, 2.021)	0.458
1.143 (0.693, 1.886)	0.600
1.071 (0.519, 2.210)	0.853
1.060 (1.029, 1.092)	<.001
1.006 (0.958, 1.057)	0.807
0.952 (0.905, 1.002)	0.060
0.897 (0.505, 1.594)	0.711

- Comorbidities common in PAD patients were the significant predictors of mortality
- Zilver PTX not a predictor of mortality

JAPAN POST-MARKET STUDIES

Covariate Analysis

- Comorbidities common in PAD patients were the significant predictors of mortality
- Zilver PTX not a predictor of mortality

Covariate Analysis: Dose

- Paclitaxel analyzed by dose (mg) per patient
- Significant predictors same as treatment arm analysis
 - RCT: Age, tissue loss, CHF
 - Japan: CLI, renal failure, gender, age, hypercholesterolemia

Study	Hazard Ratio	p-value	
RCT	1.034 (0.718, 1.490)	0.86	
Japan	1.201 (0.987, 1.461)	0.07	

 Paclitaxel dose
not a predictor of mortality

Conclusion

Analysis must be based on actual treatment

Protocol defined secondary randomization and crossover must not be ignored

No mortality signal with Zilver PTX

When data are appropriately analyzed

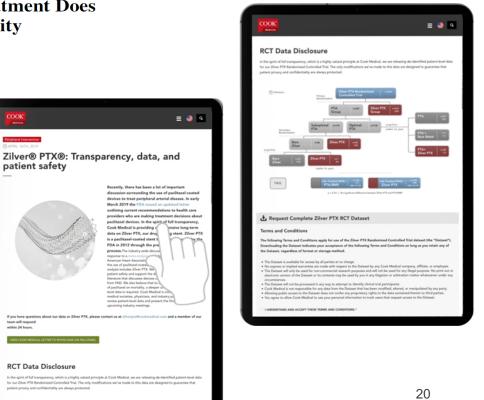
CLINICAL INVESTIGATION

ARTERIAL INTERVENTIONS

patient safety

team will respond within 24 hours.

RCT Data Disclosure


nt privacy and confidentiality are always protects

Paclitaxel-Coated Zilver PTX Drug-Eluting Stent Treatment Does Not Result in Increased Long-Term All-Cause Mortality **Compared to Uncoated Devices**

Michael D. Dake¹ · Gary M. Ansel² · Marc Bosiers³ · Andrew Holden⁴ · Osamu Iida⁵ · Michael R. Jaff⁶ · Aaron E. Lottes⁷ · Erin E. O'Leary⁷ · Alan T. Saunders⁷ · Marc Schermerhorn⁸ · Hirovoshi Yokoi⁹ · Thomas Zeller¹⁰

The patient-level data used for the analyses presented here is available on the following website:

https://www.cookmedical.com/peripheralintervention/paclitaxel/

